Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Pers Med ; 12(6)2022 Jun 18.
Article in English | MEDLINE | ID: covidwho-1987865

ABSTRACT

Vaccine-induced immunity is a key strategy in the long-term control of the COVID-19 pandemic. The aim of our study was to explore the relationship between mRNA vaccine-induced antibodies and gender-sensitive variables among healthcare workers. Two thousand-sixty-five volunteers who received the BNT162b2 vaccine were enrolled in the study and followed up. Demographic, clinical, and social variables (educational level, marital status, occupation, childcare) were evaluated through a self-administered questionnaire. Anti-Spike (S) IgG were measured at 1 month (T1) and at 5 months (T2) after the second vaccine dose. At T1, median anti-S IgG values were 693 [394->800] AU/mL (1 AU = 2.6 BAU). Values > 800 AU/mL (2080 BAU/mL) were directly associated with a previous COVID-19 (p < 0.001) infection and inversely with age (p < 0.001), smoking habit (p < 0.001), and autoimmune diseases (p < 0.001). At T2, a significant decreasing in anti-S IgG values was observed (187 [81-262] AU/mL), with a median decrease of 72 [60-82]%. On multivariate data analysis, a reduction of more than 82% was directly associated with male sex (p < 0.021), age (p < 0.001), smoking (p = 0.038), hypertension (p = 0.042), and, inversely, with previous COVID-19 infection (p < 0.001) and being "cohabiting" (p = 0.005). Our findings suggest that demographic, clinical, and social variables play a role in anti-S IgG values decreasing in long-term follow up and should be considered to find personalized vaccine schedules.

2.
Acta Astronaut ; 197: 323-335, 2022 Aug.
Article in English | MEDLINE | ID: covidwho-1982442

ABSTRACT

The pandemic emergency caused by the spread of COVID-19 has stressed the importance of promptly identifying new epidemic clusters and patterns, to ensure the implementation of local risk containment measures and provide the needed healthcare to the population. In this framework, artificial intelligence, GIS, geospatial analysis and space assets can play a crucial role. Social media analytics can be used to trigger Earth Observation (EO) satellite acquisitions over potential new areas of human aggregation. Similarly, EO satellites can be used jointly with social media analytics to systematically monitor well-known areas of aggregation (green urban areas, public markets, etc.). The information that can be obtained from the Earth Cognitive System 4 COVID-19 (ECO4CO) are both predictive, aiming to identify possible new clusters of outbreaks, and at the same time supervisorial, by monitoring infrastructures (i.e. traffic jams, parking lots) or specific categories (i.e. teenagers, doctors, teachers, etc.). In this perspective, the technologies described in this paper will allow us to detect critical areas where individuals can be involved in risky aggregation clusters. The ECO4CO data lake will be integrated with ad hoc data obtained by health care structures to understand trends and dynamics, to assess criticalities with respect to medical response and supplies, and to test possibilities useful to tackle potential future emergencies. The System will also provide geographical information on the spread of the infection which will allow an appropriate context-specific public health response to the epidemic. This project has been co-funded by the European Space Agency under its Business Applications programme.

3.
Dig Liver Dis ; 52(12): 1383-1389, 2020 12.
Article in English | MEDLINE | ID: covidwho-834313

ABSTRACT

The microbiota-gut-liver-lung axis plays a bidirectional role in the pathophysiology of a number of infectious diseases. During the course of severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) and 2 (SARS-CoV-2) infection, this pathway is unbalanced due to intestinal involvement and systemic inflammatory response. Moreover, there is convincing preliminary evidence linking microbiota-gut-liver axis perturbations, proinflammatory status, and endothelial damage in noncommunicable preventable diseases with coronavirus disease 2019 (Covid-19) severity. Intestinal damage due to SARS-CoV-2 infection, systemic inflammation-induced dysfunction, and IL-6-mediated diffuse vascular damage may increase intestinal permeability and precipitate bacterial translocation. The systemic release of damage- and pathogen-associated molecular patterns (e.g. lipopolysaccharides) and consequent immune-activation may in turn auto-fuel vicious cycles of systemic inflammation and tissue damage. Thus, intestinal bacterial translocation may play an additive/synergistic role in the cytokine release syndrome in Covid-19. This review provides evidence on gut-liver axis involvement in Covid-19 as well as insights into the hypothesis that intestinal endotheliitis and permeability changes with bacterial translocation are key pathophysiologic events modulating systemic inflammatory response. Moreover, it presents an overview of readily applicable measures for the modulation of the gut-liver axis and microbiota in clinical practice.


Subject(s)
Bacterial Translocation/immunology , COVID-19/immunology , Cytokine Release Syndrome/immunology , Gastrointestinal Microbiome/immunology , Intestinal Mucosa/metabolism , Lipopolysaccharides/metabolism , Liver/metabolism , Permeability , Alarmins/immunology , Alarmins/metabolism , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/metabolism , Cytokine Release Syndrome/metabolism , Disease Progression , Humans , Immunity/immunology , Inflammation , Interleukin-6/immunology , Lipopolysaccharides/immunology , Liver/immunology , Lung/immunology , Lung/metabolism , Microbiota/immunology , Pathogen-Associated Molecular Pattern Molecules/immunology , Pathogen-Associated Molecular Pattern Molecules/metabolism , SARS-CoV-2/metabolism , Serine Endopeptidases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL